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Purpose. The purpose of this work was to determine whether a new
modeling methodology using fuzzy logic can predict skin permeability
coefficients that are given compound descriptors that have been
proven to affect percutaneous penetration.
Methods. Three fuzzy inference models were developed using sub-
tractive clustering to define natural structures within the data and
assign subsequent rules. The numeric parameters describing the rules
were refined through the use of an Adaptive Neural Fuzzy Inference
System implemented in MatLab. Each model was evaluated using the
entire data set. Then predicted outputs were compared to the pub-
lished experimental data.
Results. All databases produced fuzzy inference models that success-
fully predicted skin permeability coefficients, with correlation coef-
ficients ranging from 0.83 to 0.97. The lowest correlation coefficient
resulted from a model using log octanol/water partition coefficient
and molecular weight as inputs with two input membership functions
evaluated by two fuzzy rules. The correlation coefficient of 0.97 oc-
curred when log octanol/water partition coefficient and hydrogen
bond donor activity were used as inputs with three input membership
functions evaluated by three fuzzy rules.
Conclusions. Fuzzy rule-based models are a realistic and promising
tool that can be used to successfully model and predict skin perme-
ability coefficients as well as or better than previous algorithms with
fewer inputs

KEY WORDS: fuzzy logic; skin permeability; percutaneous absorp-
tion; clustering; adaptive neural fuzzy inference system.

INTRODUCTION

Skin permeability is an important parameter in the as-
sessment of potential toxicity of environmental agents or the
feasibility of a drug for transdermal delivery. Although skin
penetration can be determined experimentally, a simple
model that can predict this descriptor, based on few inputs, is
invaluable to both risk assessment and drug-delivery investi-
gations. A number of algorithms to predict skin permeability
coefficients have been developed, using empirical, analytical,
and theoretical approaches (1–9). In his often-cited study (1),
Flynn related the skin permeability coefficients (Kp) of over
90 compounds to their octanol/water partition coefficients
(Kow). Potts and Guy (2) used multiple regression to develop
an equation involving both Kow and molecular weight (MW)
to predict skin permeability coefficients and then tested that

algorithm with the Flynn database. In their revised model,
Potts and Guy (3) related the skin permeability coefficient to
molecular volume (MV) and hydrogen bond donor and ac-
ceptor activities by multiple regression analysis. Abraham et
al. (6) also developed an equation using hydrogen bond ac-
tivity parameters, which was very similar to Guy and Potts (3)
but was able to predict skin permeability coefficients for ad-
ditional compounds, including some steroids.

The purpose of this work was to use the above-men-
tioned, previously published databases of compounds to de-
velop a fuzzy model to predict skin permeability coefficients.
Fuzzy logic is a powerful tool that has been successfully used
for modeling, control systems, pattern recognition, image pro-
cessing and detection of distorted plethysmogram pulses (10–
13). It differs from traditional Boolean logic in that input and
output values to a fuzzy inference model can belong to mul-
tiple sets with different membership values in each set (14).
Most human skin permeability models have been developed
by postulating factors that may influence penetration and
then using various mathematical techniques, typically mul-
tiple regression, to verify that influence. The objectives of this
work were to assess the performance of a fuzzy inference
system for predicting skin permeability coefficients and com-
pare that to more traditional models.

In comparing these fuzzy models with previously pub-
lished algorithms, the criteria for a “good” model are that its
outputs closely correlate to experimental outputs (reflected in
a correlation coefficient), it uses few inputs, it enhances un-
derstanding of the phenomenon, and it is easy to use.

THEORY

Introduction to Fuzzy Modeling

All modeling schemes, whether based on traditional
mathematical principles or developed through fuzzy tech-
niques, represent a mapping of a set of inputs to a set of
outputs. For predicting chemical penetration through the
skin, the output is the skin permeability coefficient and inputs
include a variety of descriptors, such as MW, MV, log octanol/
water partition coefficients, and hydrogen bonding activity
(1–6). The difference between models previously published
and the one described in this article is simply the method used
to map the input to output. Many models are developed with-
out a complete knowledge of the system being interpreted or
predicted. For instance, analytical models are usually satisfac-
tory at predicting outputs but can be oversimplifications of
the system. This is because the system cannot be fully de-
scribed, as all of the factors involved are either not known or
completely understood. Independent of the method used, all
traditional types of models impose a form of mapping based
on known information. A set of conventions used to create a
form or outline must be assumed to develop the model. An
alternative method is to use a “model-free” form to map from
a set of inputs to an output. In this case, natural rules are
developed from the data rather than imposing rules on the
modeling system. Therefore, in a model-free system, the rules
are developed through clustering algorithms that divide the
data into natural partitions. Mapping is then optimized
through various techniques. The result of this “model-free” or
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even “structure-free” model is still a mapping from inputs to
outputs, similar to traditional algorithms.

The rules, whether imposed by the modeler or deter-
mined from the data, can be crisp (with the truth of the propo-
sitions being either true or false) or fuzzy (whereas the truths
of propositions lie along a continuum along the unit interval).
For instance, in Kirchner et al. (5), a chemical database is
divided into subgroups of compounds with similar molar vol-
umes. Linear regression is performed within each group to
develop a relationship between log Kow and log Kp. Through
these subgroups or clusters (as described in the following sec-
tion), Kirchner et al. (5) imposed rules on the system and the
model was forced to conform to these rules. If, for instance,
the data had clustered into subgroups, in which the members
had partial membership or degree of belonging (as described
in the following section), the resulting rules would be fuzzy.

Fuzzy Sets and Membership Functions

Phenomena to be modeled are complex and often
riddled with uncertainty in the form of ambiguity. Tradition-
ally, uncertainty is described in mathematical models by ran-
dom characteristics, but fuzzy set theory allows this uncer-
tainty to be represented through possibility rather than prob-
ability. Ross states that most uncertainty, however, is not truly
random and can better be represented through fuzzy set
theory (11).

Classic set theory defines objects as either a full or non-
member of a set. In fuzzy set theory, an element can be a
partial member of the set. The element will have a degree of
membership within a set, which can be defined by a particular
membership function (14). For example, the set of chemicals
with a MW from 500 to 700 is a classic or “crisp” set; the set
of chemicals with MW in the region “around 600” is fuzzy. In
a crisp or Boolean set, an element is either a full member of
a particular set, represented by a membership value of one on
the y-axis of Fig. 1a, or is not a member represented by a
membership value of zero. In a fuzzy set, elements can have
degrees of membership on the real continuous interval [0,1]
with the endpoints of the interval (zero and one) again rep-
resenting no or full membership, respectively, as demon-
strated in Fig. 1b. Infinite values between these endpoints
represent various degrees of membership for elements of the
fuzzy set.

The use of membership functions is the major difference
between crisp and fuzzy sets. In crisp sets, the membership
function is unique, whereas fuzzy sets can have an unlimited
number of membership functions and this flexibility translates
to the utility of these types of sets (11). The membership
function is the avenue through which to classify the fuzziness
of a set. Membership functions can be assigned by intuition,
inference, rank ordering, neural networks, genetic algorithms,
and inductive reasoning, in addition to several other methods
(11).

Clustering Methods

For complex systems or databases, an effective modeling
approach can be to partition or “cluster” the available data
into subsets and then approximate each subset by a simple
model. By clustering data, not only can structures in the data

be revealed, but also the complexity of the model can be
reduced. Hard or crisp clustering methods, based on classic
set theory, partition the data into separate, mutually exclusive
subsets and require complete or no membership of an object
to a cluster. Fuzzy clustering methods allow objects to belong
to multiple clusters at one time with different degrees of
membership.

Fuzzy clustering is a means to organize data into groups.
Each group is formed based upon similarity of the data be-
longing to that group or cluster. Data that belong to a par-
ticular cluster have more in common with other data belong-
ing to that cluster than to data not belonging to that cluster.
Further, given the nature of fuzzy sets, each data point can
have membership in a variety of different clusters.

Procedurally, the degree of similarity, or membership, is
determined in a mathematical sense (generally some distance
norm). Particular aspects of these strategies depend upon the
clustering method used. The range of complexity, appropri-
ateness, and ease of implementation of fuzzy clustering meth-
odologies is vast. A good treatment of the topic can be found
in Babuška (12). Some of the fuzzy clustering methods in-
clude partitioning (15,16), subtractive clustering (17), fuzzy
c-means, Gustafson-Kessel, fuzzy maximum likelihood esti-
mate clustering, fuzzy c-varieties, fuzzy c-elliptotypes, fuzzy
c-regression models, and possible clustering (12). Each of
these methods has particular characteristics that dictate their
respective usefulness for given situation. One of the limiting
factors for these methods is that they are difficult to gener-

Fig. 1. Membership functions of (a) a crisp set and (b) a fuzzy set.
The crisp set includes all compounds with a molecular weight (MW)
of 500 to 700 and assigns them a membership value of one. All other
compounds with an MW outside that set have membership equal to
0. The fuzzy set includes the set of compounds with an MW “around
600.”
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alize, and therefore it is difficult to develop the computational
tools required for repetitive data analysis.

One of the most simple and straightforward clustering
methods is fuzzy partitioning (16). This method divides each
dimension of the data space into groups. The division is based
entirely upon the scale of the data space without regard for
the distribution or arrangement of the data within the data
space. The resulting ordinate groups (or partitions) are the
clusters that represent the input space. Similarly, the output
data space is divided into groups. Rules are subsequently de-
rived that map the data included in the input clusters to the
clusters that represent the output space. This technique has
merit and utility but is an unsophisticated approach to repre-
sent data and relationships between input and output data
spaces.

Chiu (17) proposed subtractive clustering to mathemati-
cally evaluate each data point as a potential cluster center.
After the initial examination, the point that has the greatest
potential to be a cluster center is identified. Given that selec-
tion, the potential of every other data point to be a cluster
center is reduced based upon its proximity to the identified
cluster center. Subsequent points are chosen and this process
continues until some stopping criteria are met. Given a vari-
ety of parameter designations, the result of this effort is a
sense of data organization as expressed by the number of
clusters identified, the location of the cluster centers, and the
membership of each datum in each cluster. The procedures
for subtractive clustering have been coded for use in the Mat-
Lab software (Version 6.1, Release 12.1, MathWorks, Inc.,
2000) and this method is a good choice for modeling many
forms of data. It is the method used in this work.

In a rule-based system, each cluster (describing the input

space) developed by the above procedures has a correspond-
ing rule (one rule per cluster). Each rule describes the rela-
tionship between the data in the cluster in the input space to
the output space. Collectively, the compilation of rules maps
the input data space to the output data space. For example, if
the data space consisted of three variables, each of the rules
would include three variables.

METHODS

The development of clusters and subsequent rules is con-
ceptually sufficient to describe the mapping from the input
space to the output space. However, refinement of the nu-
meric parameters is useful to enhance the model fit. The
means chosen was the Adaptive Neural Fuzzy Inference Sys-
tem (ANFIS; 16) as implemented in the MatLab Fuzzy Tool-
box. A complete discourse on the implementation of these
techniques is beyond the scope of this work. However, rel-
evant features and context are described below.

The first step to using the fuzzy rule-based model is to
develop the clusters and subsequent rules. The refinement of
these rules is accomplished using by the Sugeno inference
system (18), in which the antecedents are fuzzy propositions
but consequences are crisp functions. The specific mapping to
the crisp function is determined within ANFIS (16). The
implementation of ANFIS using MatLab requires that the
data set be divided into “training” and “checking” (sub)sets
of the data. The training data (sub)set is representative of the
entire data space. The selection of the training data (sub)set
is accomplished in a variety of ways. In this work, one-half of
the entire data set was selected as the training data. The
checking data (sub)set is similarly selected.

Fig. 2. MatLab (Mathworks, Inc., 2000) interactive interface describing Flynn Fuzzy Model. Each row of
membership functions represents a rule and consists of two membership functions, one corresponding to each
input. The first two columns represent the two inputs, molecular weight and log Kow, respectively. The last
column represents the weighted output (log Kp) of the each of the two rules. For each individual membership
function, the range of input values is represented by the values on the x-axis (molecular weight or log Kow) and
the membership value (�) is represented on the y-axis. The shaded region is a visual representation of the
resulting membership value of the input value. The rule outputs (a and b) are represented by the multicolored
bars. The gray portion represents the position of the rule output on the abscissa and the black portion of the
bar represents the minimum of the two membership values of the inputs in each rule, indicated by the horizontal
arrows. This interface gives access to the model, in which compound descriptors can be entered by moving the
vertical lines (i and ii), which results in the weighted output (c). For a compound with molecular weight (i) and
log Kow (ii), the crisp output of the model (c) is the weighted average of the two crisp outputs (a and b) of the
two rules.
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Using these data subsets, the ANFIS program modifies
the membership functions of the antecedents to monitor a
gradient vector that determines how well the fuzzy inference
system is modeling the data set. Once this vector is deter-
mined, optimization of the parameters is accomplished to re-
duce errors, however the checking data (sub)set is used to
monitor occurrences of over fitting.

Thus the skin permeability models presented here were
developed by subtractive clustering and adaptive neural tech-
niques that learned from the data obtained from previously
published studies (1,3,6). Three separate models were devel-
oped using the ANFIS program in the MatLab software and
each was based on a different group of inputs/outputs. The
data were divided into two subsets, defined as the training and
checking sets, which were used to train the model and then to
prevent over fitting the data. The model was then evaluated
by running the entire data set through it and this output data
was then compared to the published experimental data.

Several fuzzy-ruled based models were developed to pre-
dict skin permeability coefficients of chemicals using various

combinations of inputs. All fuzzy logic models predicting skin
permeability were developed using MatLab software. The
first model was developed using the database collected by
Flynn (1), which includes MW and log octanol/water partition
coefficients (log Kow) for each chemical. These two descrip-
tors served as the inputs to the model, and the log skin per-
meability coefficient (log Kp) was the output (as in all mod-
els). Next, models were developed with additional inputs. The
second model was derived from the database compiled by
Potts and Guy, (3) which is a subset of Flynn’s original data-
base and includes solvachromatic parameters for the com-
pounds such as hydrogen bond donor activity (solute summa-
tion hydrogen-bond acidity, ��2

H), hydrogen bond acceptor
activity (solute summation hydrogen-bond basicity, ��2

H), di-
polarity/polarizability (�), and the molar refractivity (R2).
The last fuzzy model to predict skin permeability coefficients
was developed from the data compiled by Abraham et al., (6)
which was an extension of the Potts and Guy database, with
the same inputs but some additional compounds.

Additional code was written to supplement the MatLab
functions that enabled a combination of inputs to be tested in
the model formulations. The “Flynn” fuzzy model (n � 94)
resulted in a generation of three models for all combinations
of MW and log Kow as inputs. The Potts and Guy fuzzy model
(n � 37) tested a combination of five inputs, including MV,
��2

H, ��2
H, �, as well as log Kow, which was added as an

input because it appeared from the Flynn model to be impor-
tant. Molar refractivity (R2) was not included as an input
because it has been determined that it is not important (3).
Finally, the Abraham fuzzy model data set (n � 54) ex-
panded on the Guy and Potts database and used the same
inputs as the Potts and Guy fuzzy model, with the replace-
ment of MV with MW. By testing combinations of inputs, not
only was the best fuzzy model determined, but the factors that
are most important to predicting skin permeability were also
discerned.

Fig. 3. Predicted skin permeability coefficients, as determined by
Flynn Fuzzy Model, vs. experimental skin permeability coefficients
from Flynn (1) with Kp in cm/h.

Fig. 4. MatLab (Mathworks, Inc., 2000) interface describing Potts and Guy Fuzzy Model. Each row of mem-
bership functions represents a rule. The first two columns represent the two inputs, ��2

H and log Kow respec-
tively. The last column represents the weighted output (log Kp) of the each of the three rules. Range of input
values is represented by the values on the x-axis and the membership value (�) is represented on the y-axis. The
shaded region is a visual representation of the resulting membership value of the input value. The rule outputs
(a, b, and c) are represented by the multicolored bars. For a compound with ��2

H (i) and log Kow (ii), the crisp
output of the model (d) is the weighted average of the crisp outputs (a, b, and c) of the three rules.
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RESULTS AND DISCUSSION

For each of the three databases, all combinations of in-
puts were used to develop models, but only the best fuzzy
model developed from each database is reported. The best
Flynn fuzzy model included two inputs (MW and log Kow) as
was expected. The generated fuzzy model partitioned the
data set (input/output) into two clusters and for each of these
clusters, defined associated membership functions. For each
cluster there was an associated rule as demonstrated in Fig. 2.
Each row of membership functions represents a rule. The first
two columns represent the two inputs, MW and log Kow, re-
spectively, and the last column represents the weighted out-
put (log Kp) of the each of the two rules. The crisp output of
the model is the weighted average of the two crisp outputs of
the two rules. The weighting is based upon compliance (or
membership) of the input to the cluster describing the input
space. There was a good correlation (r2 � 0.82) when the
predicted output of this model was compared to experimental

values (Fig. 3). Previously published algorithms using mul-
tiple regression techniques (2) obtained a correlation coeffi-
cient of r2 � 0.67 with the same two inputs. The results from
the “Flynn” fuzzy model validate that MW and log Kow can
be used to predict skin permeability and demonstrates that
fuzzy logic can successfully model this parameter as well as, if
not better, than traditional analytical techniques (2).

The best Potts and Guy fuzzy model used a combination
of just two inputs (��2

H, termed Hd in Ref. 3 and log Kow)
and three clusters (Fig. 4). The additional third row (when
compared with Fig. 2) represents the third cluster. Comparing
the model outputs to experimental data resulted in an excel-
lent correlation coefficient, r2 � 0.97 (Fig. 5). A previous
multiple regression model (3) using these hydrogen bonding
activity factors, in addition to molar volume, resulted in a
correlation coefficient of 0.94.

The best “Abraham” fuzzy model also used ��2
H and log

Kow as inputs and evaluated these inputs using three rules
(Fig. 6). When the outputs of these models were evaluated
against experimental values (Fig. 7), an excellent correlation
coefficient was observed (r2 � 0.95) and corresponds to simi-
lar previous results using regression techniques (6). The ad-
vantage of the fuzzy model is the fewer number of inputs
necessary to generate the output (two inputs in the fuzzy
model vs. five inputs using regression techniques (6)).

Overall, the objective of these fuzzy models was to verify
that fuzzy logic is a viable modeling alternative. To do this, a
comparison between previously reported and similar fuzzy
models was performed in Table I. From a comparison of sev-
eral factors, including correlation coefficients and number of
inputs required for successful mapping, it is obvious that fuzzy
logic is a valid modeling approach that is at least as good as,
if not better, than some other traditional methods. Addition-
ally, this modeling system also reveals information about the
system being modeled, as evidenced by the fact that the fuzzy

Fig. 5. Predicted skin permeability coefficients, as determined by
Potts and Guy Fuzzy Model, vs. experimental skin permeability co-
efficients from Potts and Guy (3), with Kp in cm/s.

Fig. 6. MatLab (Mathworks, Inc., 2000) interface describing Abraham Fuzzy Model. Each row of membership
functions represents a rule. The first two columns represent the two inputs, ��2

H and log Kow respectively. The
last column represents the weighted output (log Kp) of the each of the three rules. Range of input values is
represented by the values on the x-axis and the membership value (�) is represented on the y-axis. The shaded
region is a visual representation of the resulting membership value of the input value. The rule outputs (a, b,
and c) are represented by the multicolored bars. For a compound with ��2

H (i) and log Kow (ii), the crisp output
of the model (d) is the weighted average of the crisp outputs (a, b, and c) of the three rules.
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models identified the same inputs as being central to predict-
ing skin permeability, such as size and hydrogen bonding ac-
tivity, which have previously been elicited by other modeling
forms (1–8).

Fuzzy models were successful in predicting skin perme-
ability coefficients. However, these models could be im-
proved with different and perhaps more sophisticated cluster-
ing methods. The clustering methods available in the MatLab
software are limited, but there have been other methods de-
veloped (16) not yet integrated into the software. Addition-
ally, these fuzzy models were based on rather small databases.
Increasing the number of compounds for which all input de-
scriptors are available could create a data set that might bet-
ter represent the data space and thus result in an improved
model.

These models have proven that fuzzy logic is a realistic
and promising tool that can successfully model skin perme-
ability coefficients as well as or better than previous algo-
rithms. More importantly, these fuzzy models reveal that
fewer inputs are needed to predict skin permeability. Future
studies should include attempts to study and extract informa-

tion from the models and cluster structures within, to gain a
better understanding of the essential components of skin per-
meability. Additionally, future models will attempt to capi-
talize on the ability of fuzzy modeling to integrate expert
opinion and conditional parameters. Thus with larger data
sets, more sophisticated clustering techniques, and expert in-
sight into the data structure, fuzzy logic could be the ideal
approach to modeling skin permeability, along with many
other parameters in medicine.
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Table I. Comparison of Previously Published Models to Three
Fuzzy Models

Model
reference

Database
reference Inputs n r2

(2)a (1) log Kow, MW 93 0.670
(3) (3) MV, ∑�2

H, ∑�2
H 37 0.940

(6) (6) R2, �, Vx, ∑�2
H, ∑�2

H 53 0.958
A (1) log Kow, MW 93 0.828
B (3) ∑�2

H, log Kow 37 0.973
C (6) MW, ∑�2

H 53 0.959

A. Fuzzy model described in Figs. 2 and 3 (Flynn Fuzzy Model).
B. Fuzzy model described in Figs. 4 and 5 (Potts and Guy Fuzzy

Model).
C. Fuzzy model described in Figs. 6 and 7 (Abraham Fuzzy Model).
MW, molecular weight.
a Refers to reference numbers.

Fig. 7. Predicted skin permeability coefficients, as determined by
Abraham Fuzzy Model, vs. experimental skin permeability coeffi-
cients from Abraham et al. (6), with Kp in cm/s.
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